Section 01 Alternatives to HCFCs in the Refrigeration and Air Conditioning Sector 20 S maller volumes of HCFCs are used in almost all other RAC sectors. Both R-22 and HCFC-containing service blends are used to replace R-12 and R-502. In transport refrigeration some manufacturers have converted to R-22 while the majority went directly to R-134a and R-404A. In some niche markets such as the high temperature air conditioning in the industry, there are applications where CFC refrigerant R-114 was replaced with R-124, which is an HCFC. 1.2.6 Other HCFC-using sub-sectors in the RAC sector 1.2.5 HCFCs in commercial refrigeraration I n many Article 5 countries, commercial refrigeration has traditionally been dominated by smaller plug-in systems and display cases cooled by individual condensing units. The introduction of larger central systems was limited to newer and larger supermarkets. These systems in stores and shops were often cooled with R-12 and to some extent R-502 in the low temperature applications. With increasing pressure to phase out CFCs, transition to R-22 had occurred in many countries before R-404A or R-507 were accepted as the refrigerants for this sector. In the process of phasing out R-22 from commercial systems, R-404A and R-507 are being used as alternatives more frequently than in air conditioning. The use of R-22 in commercial refrigeration is significantly more challenging than the refrigerants it replaced and the non-ODS alternatives developed for this sector. This is due to the properties of R-22 which cause higher compressor temperatures requiring significant changes to the system’s design or “quick fixes” such as installing water sprays for the condensers as shown in Fig. 1.4. Fig. 1.4 A commercial refrigeration installation using R-22 in a hot climate. This model requires a water spray on the condenser to avoid high presssure and overheating of the compressors. However this causes corrosion and wastes water that is often in short supply. In this case increased electrical hazards are obvious and ‘Good Practice’ has not been properly considered. written, there were no known alternatives to R-123 suitable for existing systems. R-245fa is an HFC alternative that can be used in low pressure chiller applications but has a higher pressure making it unsuitable for most existing systems. With the current information it can be expected that in this sector existing systems using R-123 will be maintained with minimum leakages until the end of their life. In most developing countries the introduction of R-123 has been limited although in some markets low pressure R-123 chillers could be a segment that will require special attention due to the challenges to replace it. As there are only a few suppliers that produce R-123 chillers, six according to James M. Calm (James M. Calm, 2002), it would be possible to identify exactly how many units of this system are in operation and where they were installed by contacting the manufacturers/importers. As the use of indirect systems make it possible to more freely locate refrigeration units with toxic or flammable refrigerant, chillers using ammonia and hydrocarbon refrigerants are becoming more common.the-art, non-ODS equipment then has to compete with the low cost R-22 equipment. The price difference is not mainly due to the change of refrigerant but rather to the larger heat exchangers and often to design improvements that reduce energy consumption and noise to meet international market demands. A report of the International Energy Agency (IEA) One reason why R-22 still prevails in the new installation market in many Article 5 countries is the lack of energy efficiency requirements and the low awareness of customers about the cost of running the systems. In this situation, the equipment purchase price becomes the only criterion for equipment selection. The more energy efficient state-of- 1.3 Energy efficiency of air conditioning equipment